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ABSTRACT

Context. Ubiquitous small-scale vortical motions are seen to occur in the solar atmosphere both in simulations and observations.
They are thought to play a significant role in the local heating of the quiet chromosphere and corona. In a previous paper, we proposed
a new method for the automated identification of vortices based on the accurate estimation of curvature centers; this method was
implemented in the SWIRL algorithm.

Aims. We aim to assess the applicability of the SWIRL algorithm to self-consistent numerical simulations of the solar atmosphere.
The highly turbulent and dynamical solar flow poses a challenge to any vortex-detection method. We also conduct a statistical analysis
of the properties and characteristics of photospheric and chromospheric small-scale swirling motions in numerical simulations.
Methods. We applied the SWIRL algorithm to realistic, three-dimensional, radiative, magneto-hydrodynamical simulations of the
solar atmosphere carried out with the COSBOLD code. In order to achieve statistical validity, we analyzed 30 time instances of the
simulation covering 2 h of physical time.

Results. The SWIRL algorithm accurately identified most of the photospheric and chromospheric swirls, which are perceived as spi-
raling instantaneous streamlines of the horizontal component of the flow. Part of the identified swirls form three-dimensional coherent
structures that are generally rooted in magnetically dominated intergranular lanes and extend vertically into the chromospheric layers.
From a statistical analysis, we find that the average number densities of swirls in the photosphere and chromosphere are 1 Mm ™ and
4 Mm™2, respectively, while the average radius is 50 — 60 km throughout the simulated atmosphere. We also find an approximately
linear correlation between the rotational speed of chromospheric swirls and the local Alfvén speed. We find evidence that more than
80 % of the identified, coherent, vortical structures may be Alfvénic in nature.

Conclusions. The SWIRL algorithm is a reliable tool for the identification of vortical motions in magnetized, turbulent, and complex
astrophysical flows. It can serve to expand our understanding of the nature and properties of swirls in the solar atmosphere. A
statistical analysis shows that swirling structures may be smaller, more numerous, and may rotate faster than previously thought, and

also suggests a tight relation between swirls and the propagation of Alfvénic waves in the solar atmosphere.

Key words. Methods: data analysis — Sun: atmosphere — Magnetohydrodynamics (MHD)

1. Introduction

Observations carried out over the past two decades indicate that
small-scale vortical motions are ubiquitous in the quiet solar at-
mosphere. Many of the vortex detections have been obtained by
individually following the trajectories of bright points (BPs) and
small-scale magnetic structures (Bonet et al. 2008; Balmaceda
et al. 2010; Manso Sainz et al. 2011) or by visual tracking of
swirling photospheric and chromospheric features, such as rings,
filaments, and arcs (Wedemeyer-Bohm & Rouppe van der Voort
2009; Wedemeyer-Bohm et al. 2012; Park et al. 2016; Tziotziou
et al. 2018, 2019; Shetye et al. 2019). Another approach is to use
local correlation tracking (LCT) techniques to identify spiraling
motions in the morphology of the estimated horizontal velocity
fields (Bonet et al. 2010; Vargas Dominguez et al. 2011; Re-
querey et al. 2017, 2018). A review on vortical motions in the
solar atmosphere is presented in Tziotziou et al. (2023).

These methods yielded precious results on the characteris-
tic sizes, lifetimes, and rotational periods of photospheric and

chromospheric swirls. However, they are possibly biased by the
human conception of the definition of a vortex, because the de-
tection processes rely on the visual identification of swirling mo-
tions from images, time sequences, and velocity field maps de-
rived from observations. A more pragmatic approach consists
in using mathematical criteria and geometrical methods to limit
the effects of human subjectivity in the identification process. A
number of such vortex identification methods can be found in
the literature (see, e.g., Giinther & Theisel 2018, for a review).

Many of these methods have been employed to study small-
scale vortical motions in the solar atmosphere, especially in the
context of numerical simulations where the necessary physical
quantities are directly accessible. For example, studies using the
I" functions (Graftieaux et al. 2001) to study photospheric vor-
tices in observations yielded average diameters of ~ 0.5 Mm and
lifetimes of ~ 0.3 min (Giagkiozis et al. 2018; Liu et al. 2019b).
In the chromosphere, Dakanalis et al. (2022) reported swirls
with a mean diameter of 2.6 + 0.6 Mm and a lifetime of about
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10.3 min using a new morphological approach (Dakanalis et al.
2021). From simulations, chromospheric swirls with typical di-
ameters of 0.7 £ 0.3 Mm and average lifetimes of ~ 1.0 min have
been found by Kato & Wedemeyer (2017) using the swirling
strength criterion (Zhou et al. 1999). We further refer the reader
to Stein & Nordlund (1998), Moll et al. (2011), Shelyag et al.
(2011), Kitiashvili et al. (2012), Moll et al. (2012), Steiner &
Rezaei (2012), Shelyag et al. (2013), Silva et al. (2018), Liu et al.
(2019a), Canivete Cuissa & Steiner (2020), Yadav et al. (2020),
Silva et al. (2020), Silva et al. (2021), Battaglia et al. (2021), and
Aljohani et al. (2022) for a nonexhaustive list of studies employ-
ing mathematical and geometrical methods to analyze swirling
motions in observations and numerical simulations of the solar
atmosphere.

However, a universally accepted and rigorous method for
vortex identification has not yet been found. Indeed, all the pro-
posed methods present shortcomings when applied to the mag-
netized, turbulent, and highly dynamical flows of the solar at-
mosphere (see, e.g., Canivete Cuissa & Steiner 2022, for a dis-
cussion). In Canivete Cuissa & Steiner (2022) (hereafter: Paper
I), we presented a new method for the automated identification
of vortices, called the estimated vortex center (EVC) method. It
combines the accuracy and quantitative aspects of mathematical
criteria with the global and morphological perspective of the cur-
vature center method proposed by Sadarjoen & Post (1999). We
implemented the method in a Python package called SWirl Iden-
tification by Rotation-centers Localization (SWIRL) (Canivete
Cuissa 2022), which is open source on GitHub'.

The SWIRL algorithm was tested on an artificial velocity
field composed of nine Lamb-Oseen vortex models with a ran-
dom Gaussian noise and on the turbulent flow resulting from
a magneto-hydrodynamical (MHD) Orszag-Tang vortex system.
In particular, the MHD Orszag-Tang test yields a flow with a
diverse spectrum of MHD modes, shocks, and turbulence (see,
e.g., Londrillo & Del Zanna 2000). Consequently, accurate vor-
tex identification in such a complex flow poses a significant chal-
lenge to any dedicated algorithm. The results showed the relia-
bility and robustness of the algorithm in the presence of noise,
turbulence, and magnetic fields. Moreover, as the EVC method
does not require the use of a threshold, vortices with rotational
velocities that are comparable to the noisy background veloc-
ity field are not precluded from being identified. Therefore, the
SWIRL algorithm proved to be suitable for identifying vortices
in astrophysical velocity fields.

There are many open questions regarding small-scale swirls
in the solar atmosphere. For example, the typical size, number
density, strength, and lifetime of these events have been the sub-
ject of multiple observational and numerical studies. However,
the obtained results most certainly depend on the spatial reso-
lution of the instrumentation or simulation (Yadav et al. 2020),
and on the methods employed (see, e.g., Silva et al. 2018; Trem-
blay et al. 2018). It is also not yet clear whether coherent vortical
structures observed in the lower solar atmosphere can extend into
the corona (Breu et al. 2022).

Moreover, being tightly coupled to the small-scale magnetic
field of the Sun, small-scale vortical motions could be associ-
ated with torsional Alfvén waves (Wedemeyer-Bohm et al. 2012;
Shelyag et al. 2013). Signatures of torsional Alfvén waves in
the solar atmosphere have been found by, for example, Jess
et al. (2009), Okamoto & De Pontieu (2011), De Pontieu et al.
(2012), and Srivastava et al. (2017), while Liu et al. (2019b)
and Battaglia et al. (2021) reported upwardly propagating tor-

! https://github.com/jcanivete/swirl
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sional Alfvénic pulses related to chromospheric swirls in obser-
vations and numerical simulations, respectively. These studies,
among others, indicate that the energy flux associated with vor-
tical events can sustain the radiative losses in the chromosphere,
and therefore these events can contribute to local heating.

The role that small-scale swirls may play in the dynamics of
the solar atmosphere calls for a rigorous method for their identi-
fication. In particular, a robust statistical analysis of their proper-
ties is required to asses their real impact on chromospheric and
coronal heating. In this paper, we demonstrate that the method
presented in Paper I also reliably identifies swirls in the turbulent
and highly dynamical flow of a three-dimensional, MHD numer-
ical simulation of the solar atmosphere. Moreover, we carry out a
statistical analysis on the properties and characteristics of small-
scale swirling motions in those simulations.

The paper is organized as follows. In Sect. 2, we briefly de-
scribe the numerical simulations and the vortex identification
method used in this work. In Sect. 3, we present and discuss
the performance of the method when applied to numerical sim-
ulations of the solar atmosphere and a statistical analysis of the
identified swirls. Finally, we summarize our findings and present
our conclusions in Sect. 4.

2. Methods
2.1. Numerical simulations

We employed realistic numerical simulations of the solar atmo-
sphere obtained with the radiative MHD code COSBOLD (Frey-
tag et al. 2012). The size of the Cartesian simulation box is
9.6 X 9.6 x 2.8 Mm? and the cell size is 10 km in each spatial
direction. The number of grid cells is therefore 960 x 960 x 280.
The average optical surface 7509 = 1, which we label as z =
0km, is found at ~ 1300 km from the bottom of the box. There-
fore, the simulation domain represents a small volume near the
solar surface, which includes the surface layers of the convection
zone, the photosphere, and up to the middle chromosphere. The
average stratifications of density, temperature, and the root mean
square (rms) of the vertical component of the velocity field are
shown in Fig. 1.

The simulation started from a relaxed, purely hydrodynam-
ical model, to which a unipolar, vertical magnetic field of 50G
was added. The lateral boundary conditions are periodic for both
the plasma and the magnetic field, while at the top and bottom
of the box the magnetic field is forced to be vertically oriented.
More details on the simulation setup can be found in Calvo
(2018, Sect. 2) and in Battaglia et al. (2021).

This choice of initial magnetic field configuration is roughly
representative of a predominantly unipolar magnetic network
patch of a quiet Sun region. The configuration and top boundary
condition of the magnetic field favor the production of vertically
oriented vortex tubes in the chromosphere, as was demonstrated
by Battaglia et al. (2021, Appendix A). A stronger initial field
would yield a more homogeneous structure of vortices, while
vanishing magnetic fields would lead to less and rather isotropi-
cally distributed vortices.

For this study, we analyzed 30 time instances of the
COS5SBOLD simulation with a cadence of 4 min, which cover a
total of 2 h in physical time. This cadence period is two-thirds of
the mean granular lifetime (Hirzberger et al. 1999).
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Fig. 1. Average stratifications of density, p, temperature, 7', and rms
of the vertical component of the velocity field, v, .ms. The profiles rep-
resent averages, both temporally across the 30 time instances of the
COSBOLD simulation, and spatially across the horizontal sections of
the domain. The heights for the analysis of swirls in the surface layers
of the convection zone (z = =200 km), in the photosphere (z = 100 km),
and in the low chromosphere (z = 700 km) are indicated by blue dashed
lines.

2.2. Identification algorithm

In this paper, we employed the EVC method presented in Pa-
per L. It can be considered an extension of the curvature center
method proposed by Sadarjoen & Post (1999), where the ve-
locity field and its derivatives are used instead of streamlines.
In more detail, the method consists in accurately estimating the
center of rotation of every rotating fluid particle (grid cell) from
the instantaneous horizontal velocity field alone. Fluid particles
belonging to the same vortex share a common axis of rotation
(Lugt 1979), and therefore their estimated centers of rotation,
dubbed EVCs, should cluster around the true core of the vortical
structure. Consequently, vortices are identified through clusters
of EVCs.

To accurately compute the EVC of any given grid cell that
presents some degree of curvature in the velocity field, one has
to estimate the radius of curvature and the radial direction of
the local flow. For this purpose, we employ the Rortex criterion,
R, proposed by Tian et al. (2018) and Wang et al. (2019) . The
Rortex criterion is a mathematical criterion, like the vorticity,

and it is defined as

R=w u — J(w-u)* - 22,

where w is the vorticity vector, u, is the normalized, real eigen-
vector of the velocity gradient tensor, and A is the swirling
strength criterion. For more details on these quantities, we refer
the reader to Paper 1. However, whereas the vorticity and other
mathematical criteria are affected by the presence of shear flows,
the Rortex criterion measures the rigid-body rotational part of
the flow alone. Therefore, it is the optimal quantity to extract
physical information on the curvature of the flow from the ve-
locity field and allows unprecedented accuracy in the estimation
of the center of rotation (Paper I).

Given a map containing all the computed EVCs, clusters in-
dicating the presence of vortices can, in principle, be identified
by eye. Nevertheless, in Paper I we proposed a modified ver-
sion of the clustering by fast search and find of density peaks
(CFSFDP) algorithm (Rodriguez & Laio 2014) to automatize
the identification process. Moreover, a cleaning procedure is pro-
posed to remove misidentifications caused by noise or by coher-
ently nonspiraling curvatures in the flow.

The EVC method and the associated automated algorithm
are implemented in an open-source Python package called
SWIRL. For more details on the method, the clustering algo-
rithm, and the test cases, we refer the reader to Paper L.

ey

3. Results and discussion

In this section, we test the applicability of the SWIRL algorithm
in automatically identifying swirls in photospheric and chro-
mospheric horizontal sections of the simulation introduced in
Sect.2.1. We then present the results of a statistical study per-
formed over the full set of data cubes that addresses the prop-
erties of small-scale swirls and their relation with the surface
magnetic field of the Sun in numerical simulations.

The SWIRL algorithm requires careful tuning of several pa-
rameters based on the specific characteristics of the flows being
analyzed. Detailed descriptions of these parameters can be found
in Paper I and in the GitHub repository for the SWIRL code. The
values used in this study are listed in Table 1.

We find the identification process to be particularly sensi-
tive to the number of “stencils” used, as well as the “noise” and
“kink” parameters. Increasing the number of stencils increases
the robustness of the identification process to small-scale tur-
bulence. However, using too many stencils (typically more than
~ 10) can lead to lower computational performance without sig-
nificantly improving the results.

The noise and kink parameters are responsible for cleaning
up false detections, and their adjustment depends on the level of
noise and turbulence in the flow. Higher values can lead to false
detections, while excessively low values can cause true vortices
to be missed. Empirically, the parameter values that have shown
good performance in COSBOLD simulations of the solar atmo-
sphere range from about 0.5 to 1.5. However, we encourage users
of the SWIRL algorithm to experiment with different values.

The clustering parameters can also be adjusted based on de-
cision graphs (see Fig. 6 in Paper I). However, the values given in
the Table 1 should generally lead to satisfactory results for most
applications.
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Table 1. SWIRL algorithm parameters used in this work.

Criterion
Stencils 1,2,3,4,5,7
€) 0.0
Kq 09
0, 0.9
Clustering
d. 100 km
Adaptive d, False
Fast clustering True
Kernel Gaussian
Decision method gamma
Do 0.9
Ps 0.9
Dy 1.01
Noise
Noise parameter 1.3
Kink parameter 0.5

Notes. More details on the role of the different parameters can be found
in Paper I and on the GitHub repository of the code.

3.1. Validation of the SWIRL algorithm on CO5BOLD
simulations

3.1.1. Photosphere

We started from a photospheric, two-dimensional, horizontal
subsection of a time instance of the simulation data, which is
shown in Fig. 2. The chosen height is z = 100 km as shown in
Fig. 1. We notice the granular pattern of the flow with integranu-
lar lanes harboring magnetic flux concentrations (top panel). The
magnetic field is predominantly of positive polarity because of
the initial condition of the simulation.

The middle panel of Fig.2 shows the Rortex criterion, R,
computed from the horizontal velocity field. Positive values of
R (green) indicate counterclockwise curvature in the flow, while
clockwise curvatures are characterized by negative R (purple).
Small-scale patches where R # 0 appear to roughly track the
photospheric magnetic flux concentrations, but form a rather
chaotic pattern of different rotational strengths and orientations?.

It would be difficult (if not impossible) to discern coherent
vortical structures using the Rortex map alone. A priori, we do
not know if a two-dimensional region of R # 0 is part of a coher-
ent vortical structure or simply stems from the turbulent nature of
the flow. Indeed, the Rortex criterion is a local criterion, defined
on a small stencil of only very few grid cells. However, to distin-
guish turbulent, local rotations from actual vortical flows, addi-
tional information about the large-scale properties of the flow is
needed. For example, if a single fluid parcel is deflected, it may
exhibit local rotation and therefore be identified by a mathemat-
ical criterion such as Rortex. However, the presence of a vortex
flow requires several fluid parcels to rotate coherently about a

2 The strength of the Rortex criterion is proportional to the rigid-body
angular velocity of the flow, while its sign describes the orientation ac-
cording to the right-hand rule.
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Fig. 2. Two-dimensional horizontal subsection of the simulated photo-
sphere. The section measures 4.0 x 4.0 Mm? and is taken at z = 100 km.
The simulation time instance corresponds to ¢t = 5774 s. The horizon-
tal velocity field of the subsection is depicted using a vector plot. The
length of each arrow corresponds to the magnitude of the horizontal
flow, and a reference scale is included in the bottom-right corner. Top:
Vertical magnetic field B, at z = 100 km. Middle: Rortex criterion R.
Bottom: G-EVC map. Contours where R # 0 are shown in gray in the
middle panel.

common axis. It is the coherent behavior of many parcels that
indicates the presence of a vortical structure.
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Fig. 3. Vortices identified by the SWIRL algorithm in the two-
dimensional, horizontal velocity field of Fig. 2. The location and effec-
tive size of the identified vortices are indicated by colored disks. Clock-
wise vortices are represented by purple disks, while counterclockwise
ones are shown in green. The vertical magnetic field B, is color coded
and saturates at +1000 G. The gray squares denote the 0.6 x 0.6 Mm?
regions shown in Fig. 4.

This conundrum can be partially solved by considering the
G-EVC map, which is shown in the bottom panel of Fig. 2. The
G-EVC map is obtained by counting the number of EVCs in
every grid cell.> Clockwise and counterclockwise EVCs count
as —1 and +1, respectively, and their sum determines the grid
cardinality, s, in each grid cell. In principle, a cluster of EVCs
indicates the location of a vortex core, and therefore high ab-
solute values of the grid cardinality, |s|, can be used to infer
the presence of a vortex. For example, by inspecting the bottom
panel of Fig. 2, we expect a counterclockwise vortex to be found
around (x, y) = (3.1 Mm, 3.25 Mm) and a clockwise one close to
(x, y) = (0.7Mm, 2.4 Mm). On the other hand, we can presume
that the Rortex patches around (x, y) = (0.2 Mm, 3.7 Mm) visi-
ble in the middle panel of Fig. 2 do not represent a swirl, because
the grid cardinality is relatively low in that region.

The SWIRL algorithm automatically finds clusters of G-
EVCs, and thus detects candidate vortex centers. The vortices
identified on the 4.0 x 4.0 Mm? photospheric subsection of the
COS5BOLD simulation are shown in Fig. 3. For simplicity, we
represent vortices with colored disks centered on the estimated
vortex core. However, it is important to note that the SWIRL
algorithm returns a collection of grid cells that form the vortex
for each identification. As a result, the true shape of the identi-
fied vortices, while generally exhibiting a roundish appearance,
tends to be more irregular than what is presented here. The ra-
dius of the disk corresponds to the effective radius of the vortex,

3 While each grid cell yields one single EVC, the resulting coordinates
of more than one EVC can fall into one and the same grid cell, giving
rise to the grid cardinality s of this cell.
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Fig. 4. Zoom-in plots of the photospheric regions outlined in Fig. 3.
The location and effective size of the identified vortices are indicated
by colored disks. The vertical magnetic field B, is color coded with the
same scale as in Fig. 3, while the horizontal velocity field is represented
by instantaneous streamlines.

reft, Which is computed as

Teff = \/%Ax, 2)
T

where N, is the number of EVCs belonging to the cluster and Ax
is the grid spacing. Here, the effective radius is defined through
the effective area occupied by the grid cells that form that vortex.
The color of the disks indicates the rotation direction: green for
counterclock wise vortices and purple for clockwise ones. In to-
tal, 21 vortices have been identified by the code with an average
effective radius of ~ 50 km.

Most of the detected vortices lie within or nearby strong
magnetic flux concentrations. This is expected, because pho-
tospheric swirling motions are known to be tightly coupled
to small-scale surface magnetic fields (see, e.g., Moll et al.
2012; Battaglia et al. 2021). There are also a few excep-
tions: for example, the two clockwise vortices around (x, y) =
(4.0 Mm, 3.7 Mm). These apparently nonmagnetic events could
be related to the footpoints of vortex arches in high-plasma-8
regions or to nonmagnetic bright points, such as those reported
in numerical simulations by Muthsam et al. (2010), Moll et al.
(2011), Battaglia et al. (2021), and Calvo et al. (2016).

Figure 4 shows zoom-in plots of six different 0.6 x 0.6 Mm?
regions of the photospheric section shown in Fig. 3. The horizon-
tal velocity field, which is represented by instantaneous stream-
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Fig. 5. Vortices identified by the SWIRL algorithm in the same hor-
izontal domain as that of Fig.3 but at the base of the chromosphere
(z = 700 km). The location and effective size of the identified vortices
are indicated by colored disks. Clockwise vortices are shown in purple,
while counter-clockwise ones are shown in green. The vertical magnetic
field B, is color coded and saturated at +200 G. The gray squares denote
the 0.6 x 0.6 Mm? regions shown in Fig. 6.

lines, is particularly turbulent in magnetic flux concentrations,
resulting in multiple spiraling configurations within the same
magnetic structure. In general, the identified vortices correlate
well with the spiraling instantaneous streamlines.

In panel A, no vortices have been identified despite the large
negative value of the grid cardinality, s, in that same region (see
bottom panel of Fig.2). That cluster of EVCs is caused by the
semi-circular clockwise configuration of the flow visible at co-
ordinates (x, y) = (0.3 Mm, 0.3 Mm) in the center of panel A of
Fig. 4. In this case, the SWIRL algorithm identifies the cluster of
(G-)EVC:s as a possible candidate vortex, but correctly discards
it during the cleaning procedure because the flow is not fully spi-
raling. For details on the cleaning procedure, we refer the reader
to Paper 1.

The only two misidentifications are found in panel C
at coordinates (x,y) = (0.1 Mm, 0.25Mm) and (x,y) =
(0.25Mm, 0.45Mm). The SWIRL algorithm identified two
clockwise vortices in these locations. However, the instanta-
neous velocity streamlines do not indicate the presence of spi-
raling flows. Generally, the code proved to be reliable in identi-
fying vortical motions at the photospheric level. Out of 20 identi-
fied swirls in the snapshot of Fig. 2, only two were misidentified,
giving an estimated accuracy of ~ 90 %.

3.1.2. Chromosphere

To further assess the reliability of the SWIRL algorithm when
applied to realistic numerical simulations of the solar atmo-
sphere, we repeated the identification analysis on a chromo-
spheric section of the simulation box. The chosen subsection
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Fig. 6. Zoom-in plots of the chromospheric regions outlined in Fig. 5.
The location and effective size of the identified vortices are indicated by
colored disks. The vertical magnetic field B, is color coded, while the
horizontal velocity field is represented by instantaneous streamlines.

covers the same horizontal domain at the same time instance as
taken in Sect. 3.1.1, but at z = 700 km above the average surface
of optical depth 7509 = 1, which corresponds to the bottom of
the chromosphere (see Fig. 1). The identified vortices are shown
in Fig. 5, and are also shown in more detail in the zoom-in plots
of Fig. 6.

At first sight, we notice that the swirls identified in the
chromospheric layer appear to be more numerous and larger
than the photospheric ones. Indeed, in Fig.5 there are 74 vor-
tices, with the largest one measuring 266 km in diameter. Mul-
tiple swirls are found in the magnetic region around (x, y) =
(1.0Mm, 2.0 Mm), which stems from the strong photospheric
magnetic flux concentration visible at the same coordinates in
Fig. 3. Panel C of Fig. 6 shows a 1.0 x 1.0 Mm? close-up view of
that region with streamlines derived from the horizontal velocity
field and multiple spiraling patterns of different orientation can
be seen. Battaglia et al. (2021) found that multiple swirls typi-
cally coexist in strong and complex magnetic flux concentrations
in numerical simulations, dubbing this type of formation “super-
position of swirls”.

Overall, the SWIRL algorithm identified most of the swirls
in the chromospheric section of the simulation, as we can infer
from the horizontal velocity field streamlines shown in Fig. 6.
The estimated effective radii also correlate well with the vi-
sual size of the spiraling streamlines. There are nonetheless
a few exceptions. For example, a small-scale clockwise vor-
tex at (x,y) ~ (0.6 Mm, 0.35 Mm) of panel D appears to have
been missed, while a misidentification probably occurred around
(x,¥) ~ (0.65Mm, 0.85Mm) of the same panel. Moreover, the
radius of the relatively large counterclockwise vortical system
shown in the left of panel B is presumably underestimated. An
analysis of the radial profile of the tangential velocity (as done
by, e.g., Silva et al. 2020) would be necessary to draw robust
conclusions, but based on visual inspection of closed instanta-
neous streamlines, we can estimate that the size of the vortex,
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as estimated visually, could be as much as four times larger than
that computed by SWIRL.

3.1.3. Three-dimensional structures

To investigate the three-dimensionality of the vortical struc-
tures self-consistently emerging in the simulation, we applied the
SWIRL algorithm to the full 9.6 X 9.6 Mm? horizontal domain
at all heights between z = —300 km (surface layers of the con-
vection zone) and z = 1000 km (middle chromosphere). For this
analysis, we used the same parameters (Table 1) at all heights.

As the automated identification is carried out on two-
dimensional horizontal slices, only vertically extending vortices
will be identified by our approach. Horizontal small-scale swirls
have also been observed in the solar atmosphere (see, e.g.,
Steiner et al. 2010; Fischer et al. 2020), but they probably do
not impact the upward transport of energy and mass as they do
not reach the upper atmospheric layers.

To construct three-dimensional swirling structures, we
search for vertical alignments between two-dimensional swirls
identified at different heights in the simulation box. For this pur-
pose, we consider two swirls with the same orientation to be
part of the same vortical structure if the distance between their
centers is smaller than a certain threshold. For this study, we
chose the threshold to be 40 km in the horizontal direction over
a vertical distance of 20 km, which corresponds to four grid cells
horizontally and two grid cells vertically. In this way, a missed
identification in one plane between two adjacent planes with cor-
responding identification does not preclude the identification of
the full three-dimensional structure.

Moreover, as the horizontal threshold is smaller than the
swirl average radius (see Sect. 3.2), the risk of two swirls being
improperly connected is minimal. Using larger thresholds would
increase the risk of erroneously connecting two separate swirls.
Using excessively small thresholds carries the danger of missing
a three-dimensional structure when the SWIRL algorithm misses
the detection of a vortex in a single plane.

We started with the two-dimensional swirls identified in the
horizontal plane located at z = 700 km. We then looked for hor-
izontally aligned swirls in the plane 20km below and above
it. Whenever such an alignment was found, we reiterated the
process starting from the previously connected two-dimensional
swirl. In this way, we can construct swirls of coherent vertical
extension that represent the three-dimensional extension of the
two-dimensional swirls identified by the SWIRL algorithm on
the different horizontal planes.

The three-dimensional vortices identified as above are shown
in Fig.7 for the time instance t = 5774 s of the simulation. We
note that only the vortices reaching the height of z = 700km
are displayed in this figure, because this was the starting point
for the three-dimensional stacking process. Vortical structures
that are restricted to the surface layers of the convection zone or
photosphere are omitted, as are purely chromospheric vortices
that do not extend to the photosphere. Therefore, Fig. 7 shows
only three-dimensional swirls that connect the photosphere to
the chromosphere.

The majority of the vertically extending swirls stem from
photospheric magnetic flux concentrations, as we can see from
the vertical magnetic field B, color coded on the 7509 = 1 surface
of Fig. 7. Moreover, multiple swirls coexist in strong and com-
plex magnetic foot points, which is in agreement with the results
obtained in Figs. 3 and 5 from the two-dimensional sections.

Figure 8 shows an example of a superposition of swirls
in more detail. The three-dimensional domain, which encloses

the large magnetic flux concentration located at (x,y) ~
(1.0Mm, 2.0 Mm) in Figs.3 and 5, is outlined by the red box
labeled A in Fig. 7. Multiple vortices are identified in this patch
and can be visualized by the instantaneous velocity field stream-
lines shown in the right panel of Fig. 8. The magnetic field lines
shown in the left panel are mostly vertically oriented. This is typ-
ical in strong magnetic flux concentrations with plasma-f <« 1,
where plasma-£ is the ratio between the gas pressure, pg, and the
magnetic pressure, p,, = B>/8r. We recall that swirling motions
and essentially untwisted, vertically oriented magnetic fields are
not mutually exclusive. Such a configuration can be thought of
as a quasi-rigidly rotating, stiff magnetic flux concentration.

Also visible in Fig. 7 are isolated swirls stemming from rela-
tively small and weak magnetic footpoints. An example of such
an event is shown in Fig.9, which is outlined by the red box
labeled B in Fig.7. The magnetic field is weaker in this case;
hence the plasma-£ is closer to unity in that region, in particu-
lar in the photospheric layers. Under these conditions, the flow
dominates the magnetic field and the frozen-in magnetic field
lines are dragged by the rotating plasma. Indeed, we observe
slightly twisted magnetic field lines in the proximity of the three-
dimensional swirl. The orientation of the twist in the magnetic
field lines (counterclockwise) is contrary to the rotation of the
flow (clockwise) when thinking of upwardly directed positive
polarity. Such a configuration is compatible with the propagation
of an Alfvénic pulse (see Liu et al. 2019b; Battaglia et al. 2021)
and the event shown in Fig. 9 is structurally similar to the one
analyzed by Battaglia et al. (2021), which proved to be Alfvénic
in nature.

3.2. Statistics

In this section, we investigate the properties of small-scale swirls
in the simulated solar atmosphere from a statistical point of view.
For this purpose, we ran the SWIRL algorithm on the horizontal
planes of 30 time instances of the COSBOLD simulation, cov-
ering a total physical time interval of 2 hours. We used the full
9.6 x 9.6 Mm? horizontal extent of the simulation domain be-
tween z = —300km and z = 1000 km. Our statistical analysis
assesses the properties of swirls in the surface layers of the con-
vection zone, the photosphere, and the low chromosphere of the
numerical simulation. We note that all the swirls identified in the
30 time instances have been taken into account for the analysis
presented in this section, regardless of whether or not they are
part of a three-dimensional structure.

3.2.1. Vertical profile of swirl properties

The distributions of the number density per unit area, nyp, the ef-
fective radius, r.q, and the effective rotational period, Peg, of the
identified swirls as a function of height, z, are shown in Fig. 10.
The data at each height z are generally not symmetrically dis-
tributed and are best fitted by a generalized extreme value dis-
tribution. Therefore, we show the 68.2 % and 95.4 % percentile
areas around the median, labeled 10~ and 20, respectively.

The number density of swirls, nyp, is computed as the ratio
between the average number of identified swirls at each height,
N, and the area of a horizontal plane through the simulation do-
main, Apx = 9.6 X 9.6 Mm?>. The top panel of Fig. 10 shows
that the number density decreases from nyp ~ 4Mm~2 in the
surface layers of the convection zone (z = —300 km), reaching
a minimum value of nyp ~ 1 Mm™ at around z = 200 km. Tur-
bulent convection is a natural source of vortices, which explains
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Fig. 7. Three-dimensional vortical structures identified for the time instance ¢ = 5774 s of the COSBOLD simulation. The displayed structures are
obtained by stacking two-dimensional vortices in different height levels that are sufficiently well aligned with each other in the vertical direction.
Only those structures that are rooted in the photosphere and reach the plane at z = 700 km are displayed. The three-dimensional vortices are
colored according to the Rortex value R averaged over their surface at each height z. The surface of optical depth 7500 = 1 is shown with the
vertical magnetic field B, color coded on it. The black box outlines the 4.0 x 4.0 Mm? horizontal domain used for Figs. 3 and 5, while zoomed-in
renderings of the two red boxes labeled A and B are shown in Figs. 8 and 9, respectively.

the large abundance of identified swirls below the average op-
tical surface 15990 = 1. Into the upper photosphere and chromo-
sphere, the number density increases again up to 75p ~ SMm™
around z = 1000 km. The ratio between the statistical numbers
of chromospheric and photospheric swirls corroborates the vi-
sual impression we note when comparing Figs.3 and 5. This
scenario is also in agreement with three-dimensional renderings
of the swirling strength criterion* shown by Moll et al. (2012)
and Battaglia et al. (2021) in numerical simulations. However,
the origin of this difference is still not well understood.

The middle panel of Fig. 10 shows the distribution of the ef-
fective radius of the swirls, reg, computed via Eq. (2), as a func-
tion of height z. The median profile, as well as the 10~ and 20" per-
centiles, are roughly flat in the surface layers of the convection
zone and in the chromosphere, while a slight rise characterizes
the low photosphere. The median value is r.g ~ 50 km through-
out the surface layers of the convection zone and reg ~ 60 km
in the upper photosphere. The distribution is skewed towards
larger values, but 97 % of the radii of the identified swirls mea-
sure less than 100 km and 150 km in the subsurface region and
in the low chromosphere, respectively. Swirls are therefore sta-
tistically larger in the upper layers of the simulated domain. This
growth can be explained by the expansion of the plasma ascend-
ing into the photosphere caused by the steep decrease in mass
density (Nordlund et al. 1997).

The distribution of the effective rotational period, P, of the
identified swirls is shown in the bottom panel of Fig. 10. The

4 The swirling strength criterion, A, is a mathematical quantity intro-
duced by Zhou et al. (1999). Similar to the vorticity, it detects local
curvature in the flow, but is not biased by the presence of shear flows.
For further details, we refer the reader to Canivete Cuissa & Steiner
(2020).
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effective rotational period of a swirl is computed as

4
|<R>swirl| ’

where (R)gwir 1s the average Rortex criterion computed over the
swirl area. The median of the distribution reaches its peak of
P.g ~ 140s around z = 400km with a marked skewness to-
wards larger values, that is, towards slower swirls. This result is
compatible with the growth of the typical swirl radius seen in the
middle panel, which also reaches its maximum value at around
the same height. Indeed, the growth in size caused by the expan-
sion of the photospheric plasma causes the swirls to rotate slower
because of the conservation of angular momentum. Moreover,
the structure of the distribution is also in agreement with the ver-
tical profiles of average vorticity and swirling strength presented
by Moll et al. (2011), Canivete Cuissa & Steiner (2020), and
Battaglia et al. (2021).

Pest 3

3.2.2. Swirls and magnetic fields

Next, we investigate the relation between the vertical magnetic
field, B,, and the properties of the identified swirls. Figure 11
shows the bivariate distribution of the average Rortex criterion
(R)swir1 and the average vertical magnetic field (B, )i of the
identified swirls. The averages are taken over the area of the
swirls in the three horizontal sections corresponding to the sur-
face layers of the convection zone, the photosphere, and the chro-
mosphere. The different panels correspond to the swirls iden-
tified at the bottom of the chromosphere (z = 700 km), in the
photosphere (z = 100km), and in the surface layers of the con-
vection zone (z = —200km), as shown in Fig. 1. The effective
radius of the swirl is color coded.
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Fig. 8. Three-dimensional rendering of a superposition of swirls stemming from a relatively large and complex small-scale photospheric magnetic
flux concentration. Left: Identified three-dimensional swirls colored according to the mean Rortex value R, as in Fig. 7. Thick tubes represent
magnetic field lines with the intensity of the magnetic field color coded on them. The corrugated surface near z = O km represents the 759 = 1
surface. Right: Instantaneous streamlines of the velocity field belonging to the vortical structures. The strength of the velocity field is color coded

on the streamlines.

The distributions are symmetric with respect to the sign of
the Rortex criterion in all three panels. Therefore, there is no
preferred orientation for small-scale swirls in the simulated solar
atmosphere. This result is in agreement with the observations
reported by, for example, Giagkiozis et al. (2018) and Liu et al.
(2019b).

In the surface layers of the convection zone, swirls are almost
homogeneously distributed with respect to the vertical magnetic
field for [(B;)swirll S 102 G. The properties of these swirls gen-
erated by turbulence are expected to be independent of the mag-
netic field in weakly magnetized regions, because in such cir-
cumstances the magnetic field does not affect the dynamics of
the plasma. However, an over-density of swirls can be found
for [{B.)ewin| = 107G, especially in the positive-polarity end,
meaning that swirls tend to be particularly associated with hecto-
Gauss magnetic fields. Magnetic flux concentrations can impact
the convective dynamics below the solar surface and couple it to
the photosphere (see, e.g., Battaglia et al. 2021, Fig.2), so that
swirls in highly magnetized subsurface regions are part of three-
dimensional photospheric vortical structures. We do not find any
particular pattern regarding the effective radius of the swirls. The
majority of the identified swirls measure between ~ 30km and
~ 100 km, which is in accordance with the results of Fig. 10.

A clear asymmetry towards positive-polarity magnetic fields
is noticeable in the middle and top panels of Fig. 11, which cor-
respond to photospheric and chromospheric layers, respectively.
We already encountered this asymmetry in the polarity of the
vertical magnetic field in Figs.3 and 5, and its origin can be

traced back to the initial conditions of the numerical simula-
tion. Indeed, even after relaxation, the polarity of the initial mag-
netic field persists in most of the photospheric magnetic flux con-
centrations and within the magnetic canopy of the low chromo-
sphere. The fact that most photospheric and chromospheric vor-
tices are found in regions with positive-polarity magnetic field
is therefore a consequence of our choice of the initial condition
to mimic a magnetic network patch of preferred polarity; we ex-
pect this asymmetry to be lifted in numerical simulations with no
preferred initial magnetic configuration. In the surface layers of
the convection zone, the initial imbalance is leveled out by the
action of a subsurface small-scale turbulent dynamo (see, e.g.,
Rempel 2014), which ultimately generates the negative-polarity
magnetic flux concentrations hosting the less frequent swirls on
the left side of the top and middle panels of Fig. 11.

On average, chromospheric swirls are larger than photo-
spheric ones. We discuss this difference in Sect. 3.2.1. However,
we notice that the largest swirls in the photosphere and in the
chromosphere are found in correspondence with strong mag-
netic fields. In Fig.7, we see that most of the coherent three-
dimensional vortical structures in the simulated atmosphere are
anchored in photospheric magnetic flux concentrations. There-
fore, magnetically dominated regions appear to provide prefer-
able conditions for the creation and preservation of large and co-
herent vortical structures extending throughout the photosphere
and into the chromosphere.

The distribution in the top panel of Fig. 11 forms a “butter-
fly” pattern, which hints at the existence of a relation between
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Fig. 9. Three-dimensional rendering of an isolated swirling structure stemming from a relatively small photospheric magnetic flux concentration.
Left: Identified three-dimensional swirls colored according to the mean Rortex value R, as in Fig. 7. Thick tubes represent magnetic field lines with
the intensity of the magnetic field color coded on them. The corrugated surface near z = O km represents the 7509 = 1 surface. Right: Instantaneous
streamlines of the velocity field belonging to the vortical structures. The strength of the velocity field is color coded on the streamlines.

the Rortex criterion and the vertical magnetic field in chromo-
spheric swirls. The stronger the magnetic field hosting the vor-
tex, the faster it rotates. Moreover, the relation also depends on
the radius of the swirl, as the growth of (R).wiq as a function of
(B.)swirl 18 reduced for larger swirls. In the following, we propose
a simple analytical model to explain this relation.

Figure 12 is analogous to Fig.11 but shows the average
plasma-g over the swirl area, (B)wir, instead of the average ver-
tical magnetic field, (B;)swi1- Similar to Fig. 11, the distribution
is symmetric with respect to the sign of the average Rortex cri-
terion, (R)gwir, in all panels, showing no preferred direction of
rotation for the identified swirls. In the surface layers of the con-
vection zone, the vast majority of swirls are found in 8 > 1 con-
ditions, which means that the gas dominates over the magnetic
pressure. These swirls are most certainly induced by the turbu-
lent dynamics of the convection zone.

In the photosphere, we observe the emergence of two dif-
ferent populations of swirls. The first group, characterized by
plasma-B > 1, has the same convective origin as those featured in
the bottom panel. A second collection of swirls is instead found
in B < 1 conditions, where the magnetic field dictates the dynam-
ics of the plasma. The swirls belonging to the second group are
embedded in strong magnetic flux concentrations and can repre-
sent the footpoints of the coherent three-dimensional structures
observable in Fig. 7.

Finally, in the top panel of Fig.12, we notice a butterfly
pattern similar to that seen in Fig. 11. The fastest and largest
swirls are characterized by low S values, which correspond to the
ones with high (B, )swin in Fig. 11. The dynamics of these swirls
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are dominated by the magnetic field and the model proposed in
Sect. 3.2.3 qualitatively applies.

There are also a large number of chromospheric swirls for
which the local 8 is larger than one. These swirls populate
weakly magnetized areas of the chromosphere. In these regions,
purely hydrodynamical mechanisms, such as baroclynic forces
or shocks, could be at the origin of these chromospheric switls,
which appear to be locally produced.

3.2.3. A simple model of magnetic chromospheric swirls

Let us consider a chromospheric swirl coupled to a strong mag-
netic flux tube, such as those identified above. For simplicity, we
assume their shape to be a cylinder. We further assume the sys-
tem to be in stationary magnetohydrodynamic radial equilibrium
and to rotate as a rigid body. The MHD momentum equation in
the radial coordinate, r, can then be written as
;
3rp—(B-V)Br=p7, “
where p = p; + py is the total pressure, that is the sum of
the gas pressure, p,, and the magnetic pressure, p, = B?/8r;
B = (B,, By, B;) is the magnetic field in cylindrical coordinates;
p is the plasma density; and v, is the plasma rotational velocity.
In the chromosphere, a strong magnetic flux tube is character-
ized by plasma-8 < 1, and therefore it is safe to further assume
that the total pressure p is dominated by the magnetic field com-
ponent, that is, p ~ p,,. Moreover, the rigid-body rotational ve-
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Fig. 10. Statistical distributions as a function of height z of the number
density of swirls per unit area, nop (top), the effective radius, req (mid-
dle), and the effective period of rotation, Pes (bottom). The median and
the 1o~ and 20 deviations of the distributions are shown at each height
z. The average optical surface 7500 = 1 (z = Okm) is marked by a dot-
ted line, while the heights of the surface layers of the convection zone,
photosphere, and low chromosphere used in the analysis are indicated
by dashed blue lines.

locity of the plasma is related to the angular velocity by vy = Qr.
Taking this into account, Eq. (4) becomes

1

o ®

8, (32) —(B-V)B, = pQr.
We model a chromospheric section of the magnetic flux tube
with purely vertical magnetic field B, = B(r) and density p.
Therefore, the magnetic field inside the cylinder is B = B(r)e;.
In this scenario, Eq. (5) can be further simplified into

1 2 2
g@r (B ) = pQ°r,
and integrated over the radius of the swirl r, leading to

(B(r)2 - B(0)2> = Q2. (6)

4mp

A physical solution to the equation above exists only if
B(r)? > B(0)?, that is, if the rotation of the plasma is supported
by a negative magnetic pressure gradient toward the vortex core.
Indeed, the cores of vortices within large magnetized regions are
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Fig. 11. Bivariate distribution of rotational and magnetic characteristics
of vortices at z = 700 km (chromosphere, top), z = 100km (photo-
sphere, middle), and z = —200km (surface layers of the convection
zone, bottom). Every identified vortex in these layers is represented by
a scatter point according to the Rortex criterion (R)y;; and the vertical
magnetic field (B, )i averaged over their area. The effective radius reg
of the vortex is color coded.

often found to be associated with reduced magnetic pressure. We
provide an example of such an event in Appendix A.

We recognize the local Alfvén speed, va(r) = B(r)/ +/4np,
and the rotational velocity of the swirl, vy = Qr, on the left- and
right-hand sides of Eq. (6), respectively,
va(r)® = va(0)* = vg, Q)
where v (0) is the Alfvén speed computed in the vortex center.
The above equation states that the Alfvén speed in the magnetic
flux tube is the upper limit to the swirl rotational velocity. If we
assume the magnetic field in the vortex core to be weak enough
compared to the bulk of the flux tube, then the swirl rotates at
approximately the local Alfvén speed, vy = va.

For r = 0, Eq. (7) predicts v, = 0, which is consistent with
the assumption of rigid-body rotation. Moreover, in Appendix
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Fig. 12. Bivariate distribution of the Rortex criterion, (R)gyi1, and
plasma-g averaged over the area of the identified vortices at z = 700 km
(chromosphere, top), at z = 100km (photosphere, middle), and at
z = =200 km (surface layers of the convection zone, bottom). The ef-
fective radius 7. of the vortex is color coded.

A, we show that the structure of the chromospheric swirl shown
in Fig. 9 qualitatively agrees with the model presented above.

For a consistency test of Eq. (7), we estimate the expected
rotational velocity, VZXP, of a chromospheric swirl and compare
it to the Alfvén speed in chromospheric swirls of low plasma-f3
conditions. We base our estimation on typical values of the ef-
fective radius, rg, and the Rortex criterion, R, for chromospheric
swirls in plasma-$8 < 1. From Fig. 12, we infer that such values
are re ~ 120km and R ~ 0.2 Hz.

Using the formula

®)

we calculate an expected rotational velocity for swirls at z =
700 in low plasma-8 conditions of vZJXP ~12kms™".

Figure 13 shows the probability distribution of the average
Alfvén speeds computed over the effective area of swirls iden-
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Fig. 13. Probability distributions of the average Alfvén speed, v, com-
puted over the effective area of swirls identified between z = 600 km
and z = 900 km. The total kernel density estimate is shown in black. The
distributions are divided according to the average plasma-g conditions
computed over the effective area of the swirls. The nonmagnetic cate-
gory corresponds to plasma-38 > 2.0, the mixed category corresponds
to 0.5 < plasma-8 < 2.0, and the magnetic category corresponds to
plasma-S < 0.5. The red area and vertical dashed line correspond to the
5-95 percentile range and the median of the average sound speed com-
puted over the effective area of the swirls, respectively.

tified in the low chromosphere (600km < z < 900 km). There,
we differentiate between swirls in magnetic conditions (plasma-
B < 0.5), mixed conditions (0.5 < plasma-f < 2.0), and non-
magnetic conditions (plasma-beta > 2.0), for a succinct label-

log({va)swir)) [kms™!]

log (3re{R)swin) [kms™!]

Fig. 14. Bivariate distribution of the local average Alfvén speed,
(Va)swirl, and the average estimated rotational velocity of the swirl,
Vg swirl = %reﬂ'<R>Swirl at the bottom of the chromosphere (z = 700 km).
The averages are computed over the swirl area. The average plasma-8
over the swirl area is color coded. A power-law fit of the type y = ax’
is shown in dashed black. The fitted parameters are a = 0.16, b = 1.13.
Density contours of the scattered points are shown in gray.
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ing. The expected rotational velocity of chromospheric switls
inferred from Fig. 12 and Eq. (8) and the distribution of Alfvén
speeds averaged over the effective area of swirls in low plasma-g3
conditions are consistent with the analytical model and Eq. (7).
For comparison, the distribution of the average sound speeds
computed over the effective area of the swirls is outlined by its
median together with the 5 — 95 percentile range. The estimated
rotational speed and the rotational speed derived from the model
are clearly above the sound speed.

Figure 14 shows a scatter plot of all the identified vortices at
z =700 km as a function of the Alfvén speed (va )swir and the es-
timated rotational velocity (Vg )swirl = %reg(R>swir1, both averaged
over the swirl area. A large dispersion characterizes the distribu-
tion, which is expected given the rough approximations made in
deriving Eq. (7), but a linear trend is perceivable. The solid black
line shows the relation vy = vo. For § < 1, we see that vy < va
for almost all swirls, confirming that v, is an upper limit for v.
However, this limit applies less well for weak field swirls with
Bzl

We fitted a power-law function of the type y = ax” to the
data. The resulting curve is represented by the black dashed line
in the log—log plot of Fig. 14. The fitted exponent is b = 1.16,
which is quite close to the modeled linear exponent b = 1.
Another measure of the linear correlation between (v )swin and
rei{R)swinn for the identified chromospheric swirls can be ob-
tained in the form of the Pearson’s correlation coefficient rp. For
the dataset shown in Fig. 14, we obtain rp = 0.45, which demon-
strates a discrete degree of linear correlation between these two
quantities.

3.2.4. Torsional Alfvénic waves

We also investigated the correlation between swirls in the sim-
ulated solar atmosphere and perturbations in the magnetic field
lines. Battaglia et al. (2021) reported that a toroidal perturba-
tion in the predominantly vertically directed magnetic field can
be found in upwardly propagating pulses of swirling plasma.
The same authors introduced the magnetic swirling strength, A8,
which is a measure for the toroidal components, or twists, in
magnetic flux tubes. The simultaneous presence of a twist in the
magnetic field lines and a vortical motion in the plasma may hint
at the presence of torsional Alfvénic waves propagating cojointly
with the rotating magnetic flux concentration.

Figure 15 shows the bivariate distribution of the swirls iden-
tified at the bottom of the chromosphere (z = 700 km), in the
photosphere (z = 100km), and in the surface layers of the con-
vection zone (z = —200km) as a function of the Rortex, (R)swi,
and magnetic swirling strength, (B swints averaged over the swirl
area. The average strength of the vertical magnetic field over the
swirl area, (B;)swir, is color coded.

If we do not consider the polarity of the vertical magnetic
field, the swirls identified in the surface layers of the convec-
tion zone (bottom panel) are distributed almost symmetrically
with respect to (R)swin and {A%)sig. Once more, we explain
this symmetry with the isotropical turbulence that dominates the
surface layers of the convection zone. However, the magnetic
field orientation reveals a pattern that is even more prominent
in the photosphere (middle panel): most of the swirls embed-
ded in positive-polarity magnetic fluxes are concentrated in the
top-left and bottom-right quadrants of the bivariate distribution,
while the ones associated with negative-polarity magnetic fields
are found in the top-right and bottom-left quadrants.

The excess of red points ({B;)swir1 > 0 G) in the photospheric
and chromospheric distributions is due to the initial conditions of

(Bz)swin [G]
-10' 0 10!

(RYswirt [Hz]

(R)swirt [Hz]

(RYswirt [Hz]

—04f - : ]
[Convection zone] : C

-0.6

-107%-10"°-10"% -10"70 107 1075 10> 107*

(AB)swirl [G Cm_l]

Fig. 15. Bivariate distribution of the rotational characteristics of vortices
at z = 700 km (chromosphere, top), z = 100 km (photosphere, middle),
and z = —200 km (surface layers of the convection zone, bottom). Every
identified vortex in these layers is represented by a scatter point accord-
ing to the Rortex criterion (R)gyi; and the magnetic swirling strength
criterion {(AB)i1 averaged over the swirl area. The vertical magnetic
field (B.)swin averaged over the swirl area is color coded.

the present simulations. Moreover, the pattern is less pronounced
in the surface layers of the convection zone because of the swirls
that are randomly generated by turbulence and are not part of
coherent photospherical structures.

The pattern revealed by the middle and bottom panels of
Fig. 15 can be explained if we consider the swirls to be Alfvénic
in nature, as proposed by Liu et al. (2019b) and Battaglia et al.
(2021). For a vertical magnetic field B = B,e; and an incom-
pressible plasma in magneto-hydrostatic equilibrium in the ideal
MHD approximation, a torsional Alfvén wave is characterized
by velocity and magnetic field perturbations, v and b, that obey
(see, e.g., Priest 2014, Chap. 4)

&)
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where w is the angular frequency of the plane wave and k is the
wave-vector indicating the propagation direction. For a vertically
propagating torsional Alfvén wave, that is, k = ke, with k > 0,
Eq. (9) can be simplified as

VA
= _2p,
V=78

Z

(10)

where v5 > 0 is the local Alfvén speed, while v and b are pertur-
bations in the horizontal plane.

From Eq. (10) we conclude that the perturbations v and b are
parallel or anti-parallel depending on the polarity of the vertical
magnetic field, that is, on the sign of B,. If we use the Rortex
and the magnetic swirling strength criteria as proxies to quantify
such perturbations, then we can write
sign(RA®) = —sign(B.). an
and the distributions in the surface layers of the convection zone
and photosphere of Fig. 15 appear to statistically follow this rela-
tion. The clockwise vortex associated with the counterclockwise
twist of the positive-polarity magnetic field lines shown in Fig. 9
is a practical illustration of Eq. (11).

The Alfvénic pattern encountered in the lower and middle
layers of the simulation box seems to disappear in the chromo-
sphere (top panel of Fig. 15). A high degree of symmetry is re-
stored in the distribution, although the polarity of the magnetic
field is predominantly positive. If the chromospheric swirls were
associated with upwardly propagating Alfvén waves, we would
expect Eq. (11) to be respected and the scatter points to populate
mainly the top-left and bottom-right quadrants of the plot.

We find two explanations for the systematic violation of
Eq. (11) in the simulated chromosphere. First, in Sect. 3.2.1, we
show that chromospheric swirls are more abundant than pho-
tospheric ones. Therefore, a large fraction of swirls must be
generated locally in the simulated chromosphere and, as they
are not linked to a photospheric coherent structure, they do not
share the same properties. Second, the boundary conditions of
the simulation force the magnetic field to be strictly vertical at
the top boundary, which may cause upwardly directed Alfvénic
waves to be reflected. In that case, the wave-vector becomes
k = —ke;, Eq.(10) picks up a minus sign on the right-hand
side, and therefore Alfvénic waves propagating downward are
characterized by parallel perturbations v and b when embedded
in positive-polarity magnetic fields. Consequently, swirls asso-
ciated with downwardly directed torsional Alfvén pulses would
populate the top-right and bottom-left quadrants of the top panel
of Fig. 15. We note that the narrower distribution of data points
over {18)syin in the chromosphere compared to the photosphere
and surface layers of the convection zone is due to the fact that
the magnetic swirling strength is proportional to the magnetic
field strength, which in turn is much smaller in the chromo-
sphere; it does not indicate a smaller twist angle.

To characterize the abundance of swirls exhibiting imprints
of upwardly propagating Alfvénic waves, we computed the frac-
tion of them, fajfnic, for which Eq. (11) is respected. Figure 16
shows the results obtained by considering all the swirls identified
in any time instances of the simulation (green curve) and those
only forming three-dimensional swirling structures (blue curve).
In the latter case, only the structures that reach both the surface
layers (z = Okm) and the low chromosphere (z = 700 km) are
taken into account.

In the photosphere, approximately 80 % of all the swirls
show perturbations in the plasma and in the magnetic field that
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Fig. 16. Fraction of swirls obeying Eq. (11), faifvnic> as a function of
height z. The green profile refers to all identified swirls, while the blue
curve takes into account only those swirls that form coherent struc-
tures connecting the surface layers (z = O km) to the low chromosphere
(z = 700km). Shaded areas represent statistical standard deviations.
The average optical surface 7590 = 1 (z = 0km) is marked by a dotted
line, while the heights of the surface layers of the convection zone, pho-
tosphere, and low chromosphere used in the analysis are indicated by
dashed blue lines.

are compatible with torsional Alfvénic waves, which is in accor-
dance with the pattern observed in Fig. 15. However, this frac-
tion decreases as we move upward in the simulation box and
falls below 50 % in the chromosphere. Regarding swirls that be-
long to coherent three-dimensional structures, we notice a higher
fraction at all heights, reaching ~ 90 % in the photosphere and
~ 80 % at z = 700 km.

Therefore, Fig. 16 suggests that a significant fraction of the
identified coherent three-dimensional swirls present characteris-
tics compatible with torsional Alfvénic pulses propagating up-
ward in the simulated solar atmosphere. On the other hand, vor-
tical structures that do not couple the photosphere to the chro-
mosphere appear to show fewer imprints of these waves, and are
therefore probably of a different nature and likely have a differ-
ent origin.

4. Summary and conclusions

In this paper, we employed the recently developed SWIRL algo-
rithm to investigate small-scale swirls in radiative MHD numeri-
cal simulations of the solar atmosphere. The methodology at the
core of this algorithm considers both the local and global prop-
erties of the velocity field in the detection process. Therefore,
the SWIRL algorithm is specifically tailored to identifying co-
herent vortical structures, whereas conventional methods, such
as the vorticity or the swirling strength, can only recognize local
curvatures in the flow. The identification process is automatized
through the implementation of a state-of-the-art clustering algo-
rithm. This approach requires minimal interaction with the user,
which reduces the risk of human bias in the identification pro-
cess, and ensures a high level of precision and consistency. In
Paper I, we validated the robustness of the SWIRL algorithm
against noise and turbulence.

In a first stage of the present paper, we tested the reliability of
the code in identifying swirls that emerge self-consistently from
the simulated photospheric and chromospheric flows. The inter-
play between magnetic fields, turbulence, convective flows, and
shocks significantly increases the complexity of the flow with re-
spect to the tests carried out in Paper I. In addition, fine-tuning of
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the algorithm parameters is necessary, especially for the number
of stencils, the “noise” parameter, and the “kink” parameter. We
provide the list of parameter values used in this study in Table 1;
we consider these to be suitable default values for applying the
SWIRL algorithm to numerical simulations of the solar atmo-
sphere.

The algorithm detected photospheric and chromospheric
swirls with high accuracy and precision based on the instan-
taneous streamlines of the horizontal component of the veloc-
ity field. Occasional misidentifications can occur, as shown in
Figs. 4 and 6. Moreover, the identification method implemented
in the SWIRL algorithm is not Galilean invariant and therefore
swirls that are advected at speeds comparable to their rotational
velocity could be missed. This shortcoming should not affect
photospheric swirls, which are predominantly rooted in inter-
granular lanes and tightly coupled to magnetic flux concentra-
tions, but it could be relevant to swirls in a dynamical environ-
ment such as the chromosphere. Further investigation of this as-
pect is required in order to improve the performance of the al-
gorithm and to reduce such inaccuracies. Together with the tests
carried out in Paper I, we conclude that the present SWIRL algo-
rithm is a reliable tool for the identification of swirls in the solar
atmosphere and astrophysical flows in general.

The SWIRL algorithm is currently limited to the identifica-
tion of vortices in two-dimensional planes. Therefore, in order
to investigate the presence of coherent three-dimensional vor-
tical structures extending vertically in the simulation domain,
we ran the algorithm on all the horizontal sections of a partic-
ular time instance of the COSBOLD simulation. Successively,
we stacked up the identified vortices that were approximately
vertically aligned in order to reconstruct the three-dimensional
structures. Figure 7 shows an example result of this procedure
and demonstrates that the vast majority of small-scale swirls that
reach the chromosphere stem from photospheric magnetic flux
concentrations. Depending on the intensity and complexity of
these magnetic regions, we can observe isolated vortex tubes or
multiple swirls that coexist and interact within a magnetic ele-
ment (see also Battaglia et al. 2021).

The procedure adopted in this paper to find three-
dimensional swirls is relatively basic and vortical structures in
the simulation domain may have been missed. Moreover, this
method can outline vertically extending structures only, while
horizontally directed vortex tubes and arches have been shown
to populate the solar atmosphere as well. An identification code
that could handle the three-dimensional flow of a simulation do-
main (or subdomain) would, in principle, be required to properly
characterize and study these structures. As we argue in Paper I,
the SWIRL methodology and algorithm can, in principle, be ex-
tended to three dimensions. However, the computational costs
that such an upgrade would entail complicate matters consid-
erably, especially regarding the automated clustering task. The
identification process on a 960 x 960 plane of the COSBOLD
simulations typically takes around ~ 2 min on a single CPU. Of
this time, approximately 90 % of the computational time is dedi-
cated to the clustering step. As the size of the data set increases,
the percentage of time spent on clustering is expected to rise due
to the inherent computational complexity of the clustering algo-
rithm. Consequently, the overall time required for the complete
identification process will also increase.

In the second part of this paper, we present a statistical anal-
ysis of the properties of small-scale swirls in numerical simula-
tions of the solar atmosphere and near-surface convection zone.
Our study indicates that, statistically, around one small-scale
swirl can be found in each Mm? of the photosphere, while in

the low chromosphere the number density of swirls grows to ap-
proximately 4 Mm 2. Because of these different abundances, ap-
proximately three out of four chromospheric swirls must be gen-
erated locally in the chromosphere, but the physical mechanism
responsible for this generation is still unknown.

Shelyag et al. (2012) and Canivete Cuissa & Steiner (2020)
presented an analysis of the generation of vortical motions based
on the evolution equation of the vorticity and of the swirling
strength, respectively. Both papers concluded that the origin of
swirling motions in the chromosphere must be traced to the ac-
tion of magnetic fields. However, in Sect. 3.2.2 we show that a
considerable number of chromospheric swirls are found in high
plasma-g regions, which indicates that hydrodynamical forces or
shocks may be responsible for part of the small-scale swirls in
the upper solar atmosphere.

If we extrapolate the obtained number densities to the whole
Sun, our results hint at the steady presence of ~ 6 x 10° and
~ 2 x 107 swirls in the photosphere and the chromosphere, re-
spectively. These numbers greatly exceed previous estimations
based on simulations and observations reported in the literature
(see, e.g., Wedemeyer-Bohm et al. 2012; Kato & Wedemeyer
2017; Giagkiozis et al. 2018; Liu et al. 2019a,b; Dakanalis et al.
2022). On the other hand, our analysis reveals that the average
size of the swirls in the simulated atmosphere settles down to
around 50 — 60 km in radius, although larger vortices can be sys-
tematically found in the chromosphere. In summary, swirls may
be more numerous and smaller than previously thought.

For comparison, we mention in the following a few studies
addressing the number densities and typical radii of small-scale
swirls in the solar atmosphere. A more comprehensive list of
these values can be found in Tziotziou et al. (2023). Wedemeyer-
Bohm et al. (2012) counted on average ~ 2.0 X 1073 Mm™
(3.8 arcmin™2) long-lived chromospheric swirls with a typical
radius of 1.4 x 10° km (2.0 arcsec) from observations obtained
with the CRisp Imaging SpectroPolarimeter (CRISP) instrument
of the Swedish 1m Solar Telescope (SST). Automated surveys
have been carried out by Giagkiozis et al. (2018) and Liu et al.
(2019a) on photospheric observations obtained with CRISP/SST
and with the Solar Optical Telescope (SOT) on board the Hin-
ode satellite, respectively. The first study identified on average
2.7 % 1072 Mm™? swirls with a mean radius of 290 km, while the
second one found number densities that are closer to our result,
namely 2.4 x 10~ Mm™2, but with an average radius of 280 km.
Using a new automated identification method based on the mor-
phological characterization of Ha spectral lines (Dakanalis et al.
2021), Dakanalis et al. (2022) found a number density of chro-
mospheric swirls of 8 x 107> Mm™2 and an average radius of
1.3 x 10’ km from CRISP/SST observations. From numerical
simulations, Kato & Wedemeyer (2017) also detected a rela-
tively high number of chromospheric swirls with an average
number density of 8.6 X 107! Mm™2. However, in this case, the
average radius of the identified swirls was 338 km.

Nevertheless, we would not recommend a blunt comparison
between the results presented in this paper and previous results
found in the literature. First, the identifications performed on ob-
servational data heavily rely on the methods used to estimate the
horizontal velocity fields. For example, LCT techniques should
be used with caution as they present several limitations, espe-
cially in estimating granular and subgranular flows (Verma et al.
2013; Tremblay et al. 2018). To our knowledge, the only study
that is not affected by this issue is the one presented by Dakanalis
et al. (2022), because these authors detected swirls directly from
chromospheric filtergrams. One possible solution to consider is
a deep learning approach, as proposed by Asensio Ramos et al.
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(2017). However, it is important to be aware that the simulations
on which the models are trained may introduce bias into the re-
sults if their vortical flows are not consistent with the real ones.

Second, the properties of vortical motions appear to be heav-
ily dependent on the spatial resolution available, as shown by
Yadav et al. (2020) in numerical simulations. Other details re-
garding the simulations, such as the initial and boundary condi-
tions or the strength of the magnetic field, can also deeply affect
the characteristics of vortical motions (see, e.g., Appendix A of
Battaglia et al. (2021) or Canivete Cuissa et al. (2022) for sim-
ulations with different initial magnetic fields) A comprehensive
investigation of the influence of the numerical setup on the char-
acteristics of vortices is an essential step towards a deeper un-
derstanding of their formation and evolution in numerical simu-
lations of the solar atmosphere.

Finally, different datasets and different automated algorithms
have been used for the identification of swirls in the solar atmo-
sphere. A comparative study between the available algorithms
would be necessary to assess strengths and weaknesses of the
different detection methods.

Given the clear correlation between magnetic flux concen-
trations and vortical motions, we investigated how the proper-
ties of the small-scale swirls vary as a function of the vertical
component of the magnetic field. We find indications of a rela-
tion between the vertical magnetic field, the angular velocity, and
the size of chromospheric swirls. We explain this relation with a
simple model of a homogeneously dense magnetic flux tube in
a low-plasma-g environment with a magnetic pressure gradient
that supports its rotation.

This model assumes stationary radial equilibrium and rigid-
body rotation. We acknowledge that these assumptions are only
very basic and do not accurately capture the complex nature of
chromospheric swirls. For example, swirls do not rigidly rotate
(see, e.g., Silva et al. 2020) and flows in the highly dynami-
cal chromosphere are not stationary. Nevertheless, they allow a
straightforward analytical analysis and interpretation of the swirl
properties and of our statistical results. The model suggests that
chromospheric swirls can rotate at maximum speeds that ap-
proach the local Alfvén speed, and the data gathered from the
simulation support this conclusion. To our knowledge, this re-
sult represents a new property of chromospheric swirls that has
not yet been investigated, and that could have profound impli-
cations for the total energy transport associated with small-scale
vortical motions in the solar atmosphere.

Park et al. (2016) observed a chromospheric swirl measur-
ing 0.5 — 1.0 Mm and rotating at an average speed of 13kms™!
with CRISP/SST. Although there is no available information re-
garding the magnetic field for this particular event, the observed
rotational velocity is in the range of typical Alfvén speeds in
chromospheric conditions. Other observational studies, such as
those of Wedemeyer-Bohm & Rouppe van der Voort (2009),
Morton et al. (2013), Liu et al. (2019b), and Murabito et al.
(2020), suggest slower average rotational velocities for chromo-
spheric swirls, rarely exceeding 2 kms~!. We expect future high-
resolution observations with the Daniel K. Inouye Solar Tele-
scope (DKIST) to shed light on the real rotational velocities of
swirls in the solar atmosphere.

Finally, we carried out a statistical analysis in order to inves-
tigate the possible Alfvénic nature of photospheric and chromo-
spheric swirls. We find a clear relation between the orientation
of the identified swirls, the orientation of the toroidal magnetic
perturbations in the swirling area, and the polarity of the verti-
cal magnetic field emerging from the data, in particular in the
photosphere. In 80 % of the identified photospheric swirls, this
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relation is compatible with the propagation of torsional Alfvén
waves according to Eq. (10). In the chromosphere, the correla-
tion between swirls and Alfvénic waves seems to vanish, prob-
ably because of the local generation of vortical motions, which
do not have a photospheric counterpart. However, when consid-
ering only those swirls that extend from the photosphere to the
chromosphere, we find 90% and 80% of them to show imprints
of Alfvénic waves in the photosphere and chromosphere, respec-
tively. Together with the rotational speeds reported for chromo-
spheric swirls, our study strongly suggests a strong connection
between coherent vortical structures in the solar atmosphere and
Alfvénic waves.

In conclusion, this paper demonstrates the reliability and the
capability of the SWIRL algorithm in identifying vortical mo-
tions in magnetized, turbulent, and highly dynamical astrophys-
ical flows such as those characterizing the solar atmosphere. We
believe that, combined with state-of-the-art methods for the esti-
mation of horizontal velocities and high-resolution observational
campaigns, the SWIRL algorithm can provide reliable informa-
tion from which rigorous conclusions can be drawn as to the sta-
tistical properties and nature of swirls in the solar atmosphere.
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Appendix A: Modeling chromospheric swirls

We show that the model proposed in Sect.3.2.3 for chromo-
spheric swirls is qualitatively consistent with the swirling struc-
tures observable in the simulation. We chose to analyze the swirl
shown in the three-dimensional rendering of Fig.9, because it
represents a nearly ideal case of an isolated swirl. We recall that
our model consists of a magnetic flux tube that swirls as a rigid
body and is characterized by plasma-3 < 1. We find that the mag-
netic flux tube (or vortex) center must correspond to a minimum
in magnetic pressure and that the rotational velocity is compara-
ble to the local Alfvén speed, va.

The top panel of Fig. A.1 shows the plasma-8 in a 1.0 X
1.0 Mm? section centered on the swirl at the height of 700 km,
that is, at the bottom of the chromosphere. The swirling plasma is
depicted through the vector plot. The size of the chromospheric
swirl is probably underestimated by the SWIRL algorithm. We
notice that the plasma-g is consistently lower than 1 in the vorti-
cal region, with minimal values reaching plasma-3 ~ 0.05 in the
outer layers of the swirl. Therefore, the dynamics of the swirl
under consideration are mostly dominated by the magnetic field,
in agreement with our assumption.

The magnetic pressure, py,, is shown in the middle panel of
Fig. A.1. The swirling plasma is highly magnetized, while re-
gions further away show a very low magnetic pressure. Nonethe-
less, the vortex core is found in a local minimum of magnetic
pressure, which means that a negative pressure gradient —which
opposes the centrifugal force— is directed towards the center of
the swirl. Finally, we show in the bottom panel of the same figure
that the rotational speed of the chromospheric switl (~ 1 kms™")
is of approximately the same magnitude as the local Alfvén
speed (~ 1 — 4kms™!). Moreover, we also find a local mini-
mum of the Alfvén speed in proximity to the vortex core, which
corroborates Eq. (7) and our findings regarding Fig. 14.

In conclusion, the simple model of a chromospheric swirl
embedded in a strong magnetic flux tube we put forward in
Sect.3.2.2 seems to qualitatively capture the main physical
properties of an isolated vortical structure that self-consistently
emerged from the COSBOLD simulation.
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Fig. A.1. Physical conditions in the chromospheric horizontal section
(z = 700km) of the isolated vortical structure visualized in Fig. 9. The
plasma-f3 (top), magnetic pressure, p,, (middle), the local Alfvén speed,
va (bottom) are shown. The horizontal velocity field is represented by
a vector field, while the purple circle denotes the position and effective
size of the chromospheric swirl.
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